Quantifying Environmental Control on Tropical Cyclone Intensity Change
نویسندگان
چکیده
Composite analysis is used to examine environmental and climatology and persistence characteristics of tropical cyclones (TCs) undergoing different intensity changes in the western North Pacific (WPAC) and North Atlantic (ATL) ocean basins. Using the cumulative distribution functions of 24-h intensity changes from the 2003–08 best-track data, four intensity change bins are defined: rapidly intensifying (RI), intensifying, neutral, and weakening. The Navy Operational Global Atmospheric Prediction System daily 0000 and 1200 UTC global analysis and Tropical Rainfall Measuring Mission Microwave Imager data are then used as proxies for the real atmosphere, and composites of various environmental fields believed relevant to TC intensity change are made in the vicinity of the TCs. These composites give the average characteristics near the TC, prior to undergoing a given intensity change episode. For the environmental variables, statistically significant differences are examined between RI storms and the other groups. While some environmental differences were found between RI and weakening/neutral TCs in both basins, an interesting result from this study is that the environment of RI TCs and intensifying TCs is quite similar. This indicates that the rate of intensification is only weakly dependent on the environmental conditions, on average, provided the environment is favorable. Notable exceptions were that in the WPAC, RI events occurred in environments with significantly larger conditional instability than intensifying events. In the ATL, RI events occurred in environments with weaker deep-layer shear than intensifying events. An important finding of this work is that SSTs are similar between intensifying and rapidly intensifying TCs, indicating that the rate of intensification is not critically dependent on SST. The TCs in both basins were more intense prior to undergoing an RI episode than an intensifying or neutral episode. In the WPAC, the three groups had similar translational speeds and headings, and average initial position. In the ATL, RI storms were located farther south than intensifying and neutral storms, and had a larger translational speed and a more westward component to the heading.
منابع مشابه
Dynamical Control of Rapid Tropical Cyclone Intensification by Environmental Shears
Improve our understanding of the physical processes by which (a) 3-D environmental shears, in particular the low-level meridional shear and upper-level vertical shear affect inner core structure and intensity, and (b) the mesoscale vortices, outer spiral rainbands, inner spiral rainbands, and the eyewall interact and affect TC development and intensity change. General questions to be addressed ...
متن کاملDynamical Studies in Hurricane Intensity Change
The long-term goals and objectives of this research are to develop a more complete physical understanding of tropical cyclone (TC) intensity change processes. This year’s work focused on the following three areas: Determining the three-dimensional asymmetric dynamics of the TC core region; Testing hurricane maximum intensity theory; Analyzing the environmental influences on the intensification ...
متن کاملTropical Cyclone Intensity and Structure Changes in relation to Tropical Cyclone Outflow
The overarching objective of this project is to identify impacts to tropical cyclone structure and intensity throughout the tropical cyclone lifetime. A common factor is the impact of midand upperlevel environmental conditions that affects formation and intensification of a tropical cyclone. It is hypothesized that during the formation process, the environmental interaction has maximum impact o...
متن کاملSIXTH INTERNATIONAL WORKSHOP ON TROPICAL CYCLONES Topic 1.1 : Environmental Effects on Tropical Cyclone Structure and Structure Change
Recent research to increase understanding, and techniques to improve forecasts, of the structure and structural changes of a tropical cyclone due to interaction with the environment are summarized. The atmospheric environment is considered here, and the oceanic, and air-sea interface environments are summarized in Topic 1.3. Progress in understanding how a tropical cyclone interacts with its en...
متن کاملProbabilistic Multiple Linear Regression Modeling for Tropical Cyclone Intensity
The authors describe the development and verification of a statistical model relating tropical cyclone (TC) intensity to the local large-scale environment. A multiple linear regression framework is used to estimate the expected intensity of a tropical cyclone given the environmental and storm conditions. The uncertainty of the estimate is constructed from the empirical distribution of model err...
متن کامل